CERTAIN MAGNETOHYDRODYNAMIC FLOWS ASSOCIATED
WITH THE PROPAGATION OF WAVES

Yu. Ya. Boguslavskii, A. I. loffe,
and Yu. G. Statnikov

The propagation of waves in an absorptive medium is accompanied by unidirectional motion
of this medium — a flow which develops due to the fact that the wave loses a portion of its
momentum along with energy loss, It is this loss which is compensated by the flow by virtue
of the momentum~conservationlaw. In a conducting medium the momentum losses via the
waves are associated not only with the viscosity and thermal conductivity but also with the
Joule-heat losses. Moreover, the magnetic field itself also affects the configuration and
character of the flow in this case.

The motion of a conducting fluid in a magnetic field can be described, as is well known, by the follow-
ing system of equations [1]:
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(v is the velocity, p is the density of the fluid, n, £ are the two viscosity coefficients of the fluid, p is pres-
sure, H is the magnetic-field intensity, o is the conductivity, T is temperature, ¢ is the velocity of light).

In the flow considered below the dissipative coefficients shall be considered constant; however, the
heat-transfer equations can be reduced to the entropy-conservation equation (the conditions for adiabaticity
of motion) (see [1], §52).

Let us consider an infinite plane layer having a thickness 2a, which is bounded by planar solid walls
and is filled with a conducting fluid. A beam of waves having a width 2b propagates along the axis of the
layer. The end faces of the channel are closed with films which are transparent to the waves. A uniform
magnetic field having an intensity H is applied perpendicular to the planes which bound the channel, Tet us
determine the flow which develops in such a system.

Later on it will be required to determine a certain relationship for the magnetohydrodynamic waves —
in particular, the absorption coefficient . The x axis shall be directed along the channel axis, while the
y axis shall be directed perpendicular to its walls. We shall consider a wave of the form

v = vy cos (of — kx) ™ @)
where vy is the velocity amplitude, w is the frequency, k is the wave vector, the phase velocity of the wave
u=o/ k| @)

and ¢ is the absorption coefficient, with

o= Q> /24, “)
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(Q) being the time~averaged quantity of energy dissipated per second per cubic meter; (q) is the average
energy density in the wave (the absorption coefficient & is assumed small, ®1.«< 1, where L is the channel
length).

In the case of the transverse magnetic field considered,the propagation velocities of the magneto-
hydrodynamic waves and their limiting values are determined, for example, in [1].

The quantities (Q) and (q) are determined by the following expressions:
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For the absorption coefficients we obtain the expressions when
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The velocity v in the wave is associated with a small correction h,, to the field by the relationships:
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for the condition (7)
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Here ug is the propagation velocity of sound in the medium.

For Alfven waves the absorption coefficient is equal to [1]

2= (i—+ _02_) (10)
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We shall now seek the solution of the system (1) in the form
H=H,+bh +h+..., v=vi+vi+..., p=lpo+o:+p;+ (11)
the quantities v, and h, being magnetohydrodynamic waves.

The quantities h,, p,, v, represent the next approximation in the solution of the system (1); under these
conditions a term which is independent of time — the flow velocity — appears besides the time~dependent
term.

Let us write out the equations for the second approximation for the time-averaged values (v,) and
¢(h,) of the quantities v, and h,; for this purpose we substitute the expansion (11) into the system (1), con-
sider terms of up to the second approximation inclusive, and average the resulting equations with respect
to time (the so-called Schrodinger method; see, for example [2]). As a result we obtain
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The curl operation is applied to the last equation of the system after averaging has been performed.

We will be interested in flows which develop due to the absorption of the momentum of a wave in the
middle portion of the channel only, neglecting the effect of the ends of the channel; we shall likewise as-
sume that the flow velocity is directed along the x axis throughout, while the variation of all of the quantities
associated with it takes place considerably more rapidly along the y axis than along the x axis (i.e., we ne-
glect all quantities of the form 8/8x in comparison with 3 /9y).
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Under these assumptions we obtain the following system of equations {starting from Egs. (12})] for the
flows in the middle portion of the channel:
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where C is the integration constant.

The boundary conditions for the system (13} have the form

o =0 for ye=-a, <(p>=0 for y=1ka (14)
From the system (13) one can easily obtain the equation for the quantity {v,), which has the form
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The solution of Eq. (15) with the boundary conditions (14) has the form
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where o, is a constant which is determined from the condition of mass conservation over the channel cross
section:
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Substituting Eq. (17) into this equation, we obtain the following expression for a,:
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As has already been noted, the presence of a magnetic field will affect both the absolute values of
the flow velocities and the configuration of the velocity profile. The degree to which the magnetic field
affects the flow velocity depends on the quantity De.

Thus, when Da <« 1, we obtain
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Thus, in this case the configuration of the velocity profile of the flow caused by the wave is the same
as it is in conventional acoustic flow. An increase in the absolute value of the velocity may oceur only at
the expense of increasing the absorption coefficient (other conditions remaining equal), The ratio between
the maximal values of the flow velocities in the conventional (vyx)1 and magnetohydrodynamic (v,x),cases
is equal to

(Ugey = { (20)
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In the case when Dg>1, we have
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The configuration of the velocity profile becomes flatter under these conditions.

(Vg = (22)

Let us emphasize the fact that the expressions obtained above for the stream velocities are valid only
for the following constraints:

ol <€, H*< 4npy?, 2mvgu, [ ov < 1 (23)
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The latter constraint — a small Reynolds number — is necessary for a series of the type (11) to con-
verge.

Let us now consider the case when under the conditions (23) the second inequality is replaced by the
inverse inequality, while the remaining two are retained [i.e., H®>47 pu02; see (7)]. Since in this case the
quantity hy is independent of y, it follows that the system of equations (12) for the second-approximation
quantity does not change, and consequently the equation for the flow velocity remains unchanged. The
boundary conditions likewise remain unchanged, and therefore the form of the solution remains the same;
only the absorption coefficient and the propagation velocity of the wave itself change. Under conditions (9)
the ratio between the maximal flow velocities in the conventional (v,x), and magnetohydrodynamic (vyy),
cases is equal to

<7)2x)2 2ug? Hge?
= 24
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For practical conducting fluids, plasma in particular, this ratio may be a quantity of the order of
10%-103,

In conclusion let us note the following. The existence of a constant flow leads to the appearance of
time-constant electric fields directed along the z axis and having an intensity | E| =j,0, where j; is the
z component of the current density.

Using the equation j=c curl H/47 and Eq. (13), we obtain E= O'ZHO (vzx)/c.

The quantity E may have a value of the order of 107'-10"2 4 V/cm for flows in electrolytes, for ex-~
ample, if one is able to create a flow having a velocity of 102 cm/sec in a KCI solution having a conductiv-
ity ~0.1 2”'-em™! at a magnetic-field intensity H=3 kG.

The authors thank N, A. Roi for his useful comments.
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