
C E R T A I N  M A G N E T O H Y D R O D Y N A M I C  F L O W S  

W I T H  T H E  P R O P A G A T I O N  O F  W A V E S  

Y u .  Y a .  B o g u s l a v s k i i ,  A .  I ,  I o f f e ,  
a n d  Y u .  G.  S t a t n i k o v  

A S S O C I A T E D  

The p ropaga t ion  of waves  in an abso rp t ive  medium is  accompan ied  by un id i rec t iona l  motion 
of th is  med ium - a flow which develops  due to the fact  that  the wave l o s e s  a por t ion  of i t s  
momentum along with energy lo s s .  I t  is  th is  l o s s  which is  compensa ted  by the flow by v i r tue  
of the m o m e n t n m - e o n s e r v a t i o n l a w .  In a conducting medium the momentum l o s s e s  via  the 
waves  a r e  a s s o c i a t e d  not only with the v i s c o s i t y  and t he r m a l  conductivity but a l so  with the 
Jou le -hea t  l o s s e s .  Moreover ,  the magnet ic  f ie ld i t se l f  a l so  affects  the conf igurat ion and 
c h a r a c t e r  of the flow in th is  ca se .  

The mot ion of a conducting fluid in a magnet ic  f ie ld  can be desc r ibed ,  as  is  wel l  known, by the fol low- 
ing s y s t e m  of equat ions [1]: 

divH----0 Op nit = r o t ( v •  c2 AH a-T + div pv ---- 0 -3T- 4m 

o Z V ~ ( v . V ) v =  Vp I HXrot ,  H + ! h v + f l _ i _ ( _ ~ _ ~  4_~lh v 
at ~ p 4gp p p ~ o �9 / 

p = p (e, T) 

(v is  the ve loc i ty ,  p i s  the densi ty  of the fluid, 7 ,  ~ a r e  the two v i s cos i t y  coef f ic ien ts  of the fluid, p i s  p r e s -  
sure ,  H i s  the m a g n e t i c - f i e l d i n t e n s i t y ,  a i s  the conductivi ty,  T is  t e m p e r a t u r e ,  c is  the veloci ty  of light).  

In the flow cons ide r ed  below the d i s s ipa t ive  coeff ic ients  shal l  be c ons i de r e d  constant ;  however,  the 
h e a t - t r a n s f e r  equat ions can be reduced  to the e n t r o p y - c o n s e r v a t i o n  equation (the condi t ions for  ad iaba t ic i ty  
of motion) (see [1], w 

Let us c o n s i d e r  an inf ini te  plane l a y e r  having a th ickness  2a, which is  bounded by p l ana r  so l id  wal l s  
and i s  f i l led  with a conducting fluid. A beam of waves  having a width 2b p ropaga t e s  along the axis  of the 
l aye r .  The end faces  of the channel a r e  c losed  with f i lms  which a r e  t r a n s p a r e n t  to the waves .  A uni form 
magnet ic  f ie ld having an in tens i ty  H is  appl ied p e r p e n d i c u l a r  to the p lanes  which bound the channel .  Let  us 
de t e rmine  the flow which develops  in such a sys t em.  

La te r  on i t  wil l  be r e q u i r e d  to de t e rmine  a c e r t a i n  re la t ionsh ip  for  the magne tohydrodynamic  waves - 
in p a r t i c u l a r ,  the absorp t ion  coeff ic ient  a .  The x axis  shal l  be d i r ec t ed  along the channel axis ,  while the 
y axis  shal l  be d i r ec t ed  pe rpend i cu l a r  to i ts  wal ls .  We shal l  cons ide r  a wave of the fo rm 

v ---- v~ cos (cot - -  kx) e -~x (2) 

where v 0 i s  the ve loc i ty  ampl i tude,  w i s  the f requency,  k i s  the wave vec to r ,  the phase  ve loc i ty  of the wave 

~, = co / I~i (3) 

and ~ i s  the absorp t ion  coeff ic ient ,  with 

- -  <Q> / 2 <q>, (4) 
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(Q} being the t ime-ave raged  quantity of energy dissipated per  second per  cubic meter ;  (q) is the average 
energy density in the wave (the absorption coefficient ~ is assumed small,  aL<< 1, where L is the channel 
length). 

In the case of the t r ansve r se  magnetic field considered,the propagation velocit ies of the magneto-  
hydrodynamic waves and their  l imiting values are  determined, for example, in [1]. 

The quantities (Q) and (q) are  determined by the following expressions:  

and when 

k'v~ :] " [ - ~  (q) = ~ { i  + H~ 

For  the absorption coefficients we obtain the expressions when 

H ~ ~ 4gpu0 2, ~ ~ j' 

(5) 

(6) 

H2 ~ 4npu~ ~ = ~ [~-U ~l + j ~ J -  (7) 

o 

The velocity v in the wave is associa ted with a small cor rec t ion  hy to the field by the relationships:  

for  the condition (6) 

for the condition (7) 

hy ~ vxH0 ] Uo; (8) 

(9) 

=leo +?~1 + e~ + . . . ,  

(10) 

hy / Op i/~ 

Here u 0 is the propagation velocity of sound in the medium. 
/ 

For Alfven waves the absorption coefficient is equal to [1] 

o. (§247 
2ua 3 

We shall now seek the solution of the sys tem (1) in the form 

H = Ho + hi -t- h~ -k . . . .  v = v l  + v~ -k . . . .  (11) 

the quantities v 1 and h i being magnetohydrodynamic waves. 

The quantities h2, P2, v2 represen t  the next approximation in the solution of the sys tem (1); under these 
conditions a t e rm which is independent of t ime - the flow velocity - appears  besides the t ime-dependent  
term�9 

Let us write out the equations for the second approximation for  the t ime-ave raged  values (v2) and 
(h2} of the quantities v 2 and h2; for this purpose we substitute the expansion (11) into the sys tem (1), con- 
s ider  t e rms  of up to the second approximation inclusive, and average the result ing equations with respect  
to t ime (the so-ca l led  SchrSdinger method; see, for example [2]). As a resul t  we obtain 

div (vs) = 0 

cs 4~ A (h~) ~ rot [(vsH0)] ~- rot [(Vlhl) ] --~ 0 (12) 

div [hs) = 0 

rot ((vlV) vl) = v rot A (vs) -- ~ rot ([Ho rot h~]) -- ~ rot ([hi rot hi]), v = II ] p. 

The curl  operation is applied to the last equation of the sys tem after  averaging has been performed.  

We will be in teres ted in flows which develop due to the absorption of the momentum of a wave in the 
middle portion of the channel only, neglecting the effect of the ends of the channel; we shall likewise as-  
sume that the flow velocity is directed along the x axis throughout, while the var ia t ion of all of the quantities 
associa ted  with it takes place considerably more  rapidly along the y axis than along the x axis (i.e., we ne- 
glect all quantities of the form 8 / 8 x  in compar ison with 0 /0y ) .  
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Under these  assumpt ions  we obtain the following s y s t e m  of equations [s tar t ing f r o m  Eqs. (12)] for  the 
flows in the middle por t ion  of the channel: 

c~ 0 3 <h~> O<v~> (13) 
X ~  a~ ~ - H o T  = 0  

where C is  the in tegra t ion  constant.  

The boundary conditions for  the s y s t e m  (13) have the f o r m  

h ~ = 0  for g - - ~ +  a, < v ~ > ~ 0  fcs~: g : : k  a (14) 

F r o m  the s y s t e m  (13) one can eas i ly  obtain the equation for  the quantity (V2x), which has the f o r m  

a +~ <v~> D ~ ~v~"O (y) (15) 

D ~ = //~ 0 ( y ) = / 0  ( b < l Y l < a )  
~ ' t t (0~<iyl<b) (1~) 

The solution of Eq. (15) with the boundary conditions (14) has  the f o r m  

at (chDy--chDa)+a~(chDb--chDg)  ( l y t~b )  
ax(chDy chDa) (b<IvI<a) a~= ~vo~]2vD ~ (17) 

where a i is a constant which is determined from the condition of mass conservation over the channel cross 
section: 

Po ~ <v~> dy =, 0 (18) 
0 

Substituting Eq. (17) into this equation, we obtain the following express ion  for  a v  

a2 ~ bchDb--(shDb)/D 
a I =  6 T ~ [ ~ D a  -- (sh Da)/D J" (19) 

AS has a l ready  been noted, the p r e s e n c e  of a magnet ic  field will affect  both the absolute  values  of 
the flow veloci t ies  and the configurat ion of the veloci ty  profi le .  The degree  to which the magnet ic  field 
affects  the flow veloci ty  depends on the quantity Da. 

Thus, when Da << 1, we obtain 

{ t]~a~b~D~[(l--b}a)+(y/b)~(ba}a a - l ) ]  ( I y l~b)  
<v~x> = t]4 ~z~0~b 8 (y~ _ a 2) v-la-3 (b < [ g l < a) (20) 

Thus, in this case  the configurat ion of the veloci ty  prof i le  of the flow caused  by the wave is the s ame  
as  it i s  in conventional acoust ic  flow. An i nc r ea se  in the absolute value of the veloci ty  may  occur  only at 
the expense  of inc reas ing  the absorpt ion  coeff icient  (other conditions remain ing  equal). The ra t io  between 
the m a m m a l  values  of the flow veloci t ies  in the conventional (V2x) l and magnetohydrodynamie  (V2x) 2 cases  
is equal to 

< v2x>'~ __ ~ (4/3) "q + ~ + tto~c~ / uo~4nz Ho~C: (21) 
<v~z> x al (4/3) '1 + ~ ~-~ l -~ +}~0~4.~2b 

In the case  when Da>>I,  we have 

<v~x> = I t/2a~(b]a)[e-~-i~!)--l)+(a]b)(i--e-D(bHt~D)] ( l y l ~ b )  

t (22) 1/~a~a-l[l _ e-D(~-l,t)] ( b ~ l y ] ~ a )  

The configurat ion of the veloci ty prof i le  becomes  f l a t t e r  under these  conditions. 

Let  us emphas ize  the fact  that the exp res s ions  obtained above for  the s t r e a m  ve loc i t ies  a re  val id only 
for  the following cons t ra in ts :  

~ L ~ i ,  H ~ 4 n p v 0  ~, 2:~VoUo/o)v ~ I (23) 
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The lat ter  constra int  - a small  Reynolds number  - is necessary  for a ser ies  of the type (11) to con- 
verge.  

Let us now consider  the case when under the conditions (23) the second inequality is replaced by the 
inverse  inequality, while the remaining two are  retained [i.e., H2>>4~PU02; see (7)]. Since in this case the 
quantity hly is independent of y, it follows that the sys tem of equations (12) for the second-approximation 
quantity does not change, and consequently the equation for  the flow velocity remains  unchanged. The 
boundary conditions likewise remain unchanged, and therefore  the form of the solution remains  the same; 
only the absorption coefficient and the propagation velocity of the wave i tself  change. Under conditions (9) 
the ratio between the maximal flow velocit ies in the conventional (V2x } 1 and magnetohydrodynamic (V2x) 2 
cases  is equal to 

l (24) 

For pract ica l  conducting fluids, p lasma in par t icular ,  this rat io may be a quantity of the order  of 
102 - 103 . 

In conclusion let us note the following. The existence of a constant flow Ieads to the appearance of 
t ime-constant  e lec t r ic  fields directed along the z axis and having an intensity I E I = jz ~, where Jz is the 
z component of the cur ren t  density. 

Using the equation j = c curl  I~4r  and Eq. (13), we obtain E= a2H 0 (V2x>/C. 

The quantity E may have a value of the o rde r  of 10-1-10 -2 # V / c m  for flows in e lectrolytes ,  for ex- 
ample, if one is able to crea te  a flow having a velocity of 10 2 c m / s e c  in a KC1 solution having a conductiv- 
ity ~ 0.1 ~ -  1. cm-  1 at a magnet ic-f ie ld  intensity H = 3 kG. 

The authors thank N. A. Roi for  his useful comments .  
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